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Introduction

e The modeling and estimation of conditional distribution functions are
important for the analysis of various econometric and statistical problems.

e For instance, conditional distributions are core building blocks in

e the identification and estimation of nonseparable models with
endogeneity (e.g., Imbens and Newey, 2009; Chernozhukov,
Fernandez-Val, Newey, Stouli and Vella, 2020, Quantitative
Economics);

e counterfactual distributional analysis (e.g., DiNardo, Fortin, and
Lemieux, 1996; Chernozhukov, Fernandez-Val, and Melly, 2013).

e Conditional distributions are also a fruitful starting point for the

formulation of general estimation methods (Spady and Stouli, 2018,
Biometrika).



Introduction

e Consider a continuous outcome Y and a vector of covariates X.

o \We observe that an objective function that characterizes e = H(Y, X)
such that

(i) e ~ N(O, 1),
(ii) independent of X, and
(iii) y — H(y, X) is strictly increasing w.p.1,
provides a valid characterization of the ‘distributional regression functions’
Fyix(Y | X) = ¢ (H(Y, X))
QY|X(U‘X):H_1(¢_1(U)aX)7 ue (071)

AH(Y, X)
Yy

where ®(+) is the Gaussian cumulative distribution function (CDF).

fyix(Y | X) = ¢(H(Y, X))
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where ®(-) is the Gaussian cumulative distribution function (CDF).
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These distributional regression functions are known fnals. of H(Y, X).



Introduction

e From this observation we draw two themes:

1. Modeling:

Working in terms of Gaussian Transform Representations,
e = H(Y, X), that satisfy properties (i)-(iii).

2. Objective function:

Formulate an objective function that characterizes the specified
H(Y, X) and preserves its properties, in particular monotonicity.



Contribution: Theory

We formulate flexible models for Gaussian Transform Representations,
e = H(Y, X), as linear combinations of known functions of Y and X.

We give an ML characterization of these representations, where the
objective is concave and rules out nonmonotone solutions.

We establish existence and uniqueness of the corresponding pseudo-true
representations under misspecification.

The resulting distributional models are then KLIC optimal approximations
to the true data probability distribution (White, 1982).

These approximations satisfy the monotonicity property of conditional
CDFs by construction.



Contribution: Estimation

We give asymptotic properties of the corresponding MLE.

We extend the method to adaptive Lasso (Zou, 2006) to allow for model
selection.

We derive asymptotic properties of the corresponding estimators for
distributional regression functions.

For both MLE and adaptive Lasso we derive the corresponding dual
likelihood formulation for implementation.



Agenda

. Gaussian Transforms Modeling

. Maximum Likelihood Characterization

. Estimation and Implementation
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Gaussian Transforms Modeling

e Throughout, we consider a continuous outcome random variable Y and a
vector of explanatory variables X.

e The Gaussian transform representation for the CDF of Y | X,
HY,X)= o (Fyx(Y | X)),

is a zero mean and unit variance Gaussian random variable, and is
independent from X (by construction).

e With y — Fy|x(y|X) strictly increasing, the corresponding map
y — H(y, X) is strictly increasing also.



Gaussian Transforms Modeling

e Let W(X) and S(Y') be vectors of known functions of X and Y,
respectively. Denote the derivative of S(Y') by s(Y).

o We specify
H(Y,X) = BT(X,Y), T(X,Y)=W(X)®S5(Y)
% = bat(X,Y), t(X,Y)=W(X)®s(Y).

e H(Y,X) here is a linear combination of the dictionary elements, and the
derivative is a linear combination of the derivative dictionary.



Gaussian Transforms Modeling

Let W(X) and S(Y') be vectors of known functions of X and Y,
respectively. Denote the derivative of S(Y') by s(Y).

We specify
H(Y,X) = BT(X,Y), T(X,Y)=W(X)®S5(Y)
% = bat(X,Y), t(X,Y)=W(X)®s(Y).

H(Y, X) here is a linear combination of the dictionary elements, and the
derivative is a linear combination of the derivative dictionary.

A dictionary T (X, Y) always contains the elements (1, Y), with
corresponding elements (0, 1) for t(X, Y).

Simplest specification takes S(Y) = (1, Y)' and W(X) = (1, X)'.

'Spline-Spline model’: an example of a flexible specification includes
spline transformations both of X and of Y.



Gaussian Transforms Modeling

e The corresponding density function of Y | X is

AH(Y, X)

Frx(Y | X) = 6(H(Y, X))

= ¢(bo T(X, Y){bot(X, Y)},
and the log-density is:

log frix (Y| X) = —% (log(27) + H(Y, X)?) + log (M)

oY
=~ (log(2m) + {5 T(X, Y)}*) + log(£4t(X, ¥)).

e This expression can then be used to fomulate an ML characterization of
bo, and hence of H(Y, X) and the corresponding distributional regression
functions.



Maximum Likelihood Characterisation (Population)

e Given our formulation, the population ML objective is:

Q(b)=E {f% (log(27) + {b'T(X, Y)}?) + log (b't(X, Y))}

e The corresponding first- and second-derivative functions are

0Q(b) / t(X,Y)
5 = E {f TX,Y){bT(X,Y)}+ m]
PQ(b) ;L HX )X Y)
gbor [T(X’ VITXY) + W} ’

where b't(X,Y) > 0.



Notes/Interpretation for the ML problem

Qb)=E {—% (log(27) + {b'T(X, Y)}?) + log (b't(X, Y))| .

The true parameter vector by maximizes Q(b).

The objective introduces a natural logarithmic barrier function in the
form of the log of the Jacobian term.

Thus the monotonicity requirement is imposed directly in the objective.

The log Jacobian term is important also because it ensures existence of a
maximiser under potential misspecification.

When E[T(X, Y)T(X,Y)'] is nonsingular, the Hessian is negative
definite so that Q(b) is concave and has a unique maximizer.



Gaussian Transform Regression Theory: Summary

Model

A Gaussian transform regression model takes the form
HOY, X) = B T(X,Y) | X ~ N(O,1), T(X,Y)=W(X)@S(Y), (1)

with derivative

OH(Y, X)
oY

= bot(X,Y) >0, t(X,Y)=W(X)®s(Y). 2
Regularity conditions

1. E[||T(X, V)] < oo, E[||t(X, Y)|]?] < oo, and the smallest eigenvalue of
E[T(X,Y)T(X,Y)] is bounded away from zero.

2. fyx(Y,X) is bounded away from zero with probability one.



Gaussian Transform Regression Theory: Summary

Theorem 1:

For model (1)-(2), Q(b) has a unique maximum at bg.

Theorem 2:

There exists a unique maximum b* to Q(b).

Theorem 3:

The pseudo-true density fy (Y | X) = ¢(T(X, Y)'b*){t(X, Y)'b"} is the
KLIC-closest approximation to fy|x(Y | X) in the specified class of cond.
density functions.



Connection with Distribution Regression Models

o Model (1)-(2) also arises from specifying H(Y, X) as a linear combination
of the known functions W(X)

H(Y, X) = W(X)'B(Y) (3)

with B(Y) = (B1(Y), ..., Bk(Y))" a vector of random coefficients
specified as

Bu(Y) = biS(Y), ke{l,....K}, K=dim(W(X)). (4)
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Connection with Distribution Regression Models

o Model (1)-(2) also arises from specifying H(Y, X) as a linear combination
of the known functions W(X)

H(Y, X) = W(X)'B(Y) (3)

with B(Y) = (B1(Y), ..., Bk(Y))" a vector of random coefficients
specified as

Bu(Y) = biS(Y), ke{l,....K}, K=dim(W(X)). (4)

e Together (3)-(4) give the linear form

K

H(Y, X) =" Wi(X)B(Y) =D Wi(X){bS(Y)} = bo[W(X)@S(Y)].

k=1 k=1

e For H(Y,X) | X ~ N(0,1), then
Fly | X)=o(W(X)B(y), y€,

a (Gaussian) distribution regression model.



Maximum Likelihood Estimation

Given a sample {(yi, xi) }/—1, the ML objective function is

n

0r(b) = > { -5 o(2m) + (5 Tx.))] + ogb'e(x. ) |

i=1

The MLE is
b = arg max Q,(b).

Consistency and asymptotic normality of b follow from ML theory for
concave objective function.

Asymptotic distribution of distributional regression functions follows by
the Delta method.

This is a convex programming problem.



Maximum Likelihood Estimation: Adaptive Lasso

e For model selection and in order to allow for the dimension of T(x;, yi) to
be large (i.e., singularity and "p < n") the objective can be augmented
with an adaptive Lasso penalty:

) dim(T(x;,y;))
bar, = argmax Q,(b) — A, Z wy| by,

I=1

® )\, > 0 is a penalization parameter and the weights w; are defined as

L if b #0
w {b/| if by # . I=1,....dim(T(x;,y))-

w =

0 ifh=0

e Asymptotic properties of bay, follow from adapt. Lasso theory under
misspecification (e.g., Lu, Goldberg, and Fine, 2012)

e This is also a convex programming problem.



Implementation: Dual Likelihood Formulation

(i) The dual likelihood problem is

n ug
min — n <% log(27) + 1) + {2: — Iog(—v,-)}
i=1

n
subject to  — > {T(xi,yi)u; + t(xi, )i} = 0 (5)
i=1

the dual Gaussian transform regression problem, with solution & = (7, V’)’.
(ii) The program (5) admits the method-of-moments representation
n
t(Xi, yi
S {=Tlon 0 Tonm} + 02 o,
i=1 b t(Xi7 yl)

the first-order conditions of the primal ML problem.

(i) The solutions of the two problems are related by
~ o 1 .
Uf:bT(Xf7yi)) Vi=—=———, i=1,...,n
b/t(Xh yl)

(iv) Strong duality, i.e., the value of the primal ML problem equals the value of (5).



Discussion

o Difficulties arise in the formulation of flexible models and in the choice of
an objective function for the characterization of Fy x(Y | X).

e Various formulations exist that feature advantages and drawbacks. E.g.,

¢ Quantile regression models (Koenker and Bassett, 1978) specify the
cdnal. quantile function as a linear combn. of known functions of X.

o Distribution regression models (Foresi and Peracchi, 1995; Chern.,
Fernandez-Val, and Melly, 2013) specify the cond. CDF as a
probability transform of a linear combn. of known functions of X.
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o Distribution regression models (Foresi and Peracchi, 1995; Chern.,
Fernandez-Val, and Melly, 2013) specify the cond. CDF as a
probability transform of a linear combn. of known functions of X.

e For both approaches, the corresponding objective function characterizes
the object of interest pointwise.

e As a result, the defining feature of monotonicity may not be
preserved in finite samples and under mispecification (Chernozhukov,
Fernandez-Val, and Galichon, 2010).
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e Another approach is to specify flexible models and an objective function

that characterizes these models globally.

¢ Dual regression models (Spady and Stouli, 2018) specify the quantile
function as a linear combn. of known functions of both X and a
stochastic element that satisfies the properties of a cond. CDF.

e Dual regression solutions preserve monotonicity.



Discussion

e Another approach is to specify flexible models and an objective function

that characterizes these models globally.

¢ Dual regression models (Spady and Stouli, 2018) specify the quantile
function as a linear combn. of known functions of both X and a
stochastic element that satisfies the properties of a cond. CDF.

e Dual regression solutions preserve monotonicity.
e The implied modeling of the cond. CDF is indirect. This is not innocuous.

e The method is not endowed with an ML interpretation.



Empirical Illustration

We use a dataset gathering 3,650 consecutive daily maximum
temperatures in Melbourne, y;.

We estimate conditional quantile functions (CQF) of y; given y;_1 and
the corresponding densities.

This dataset was used by Koenker (2005) to illustrate nonlinear quantile
regression, and originally analyzed by Hyndman, R.J., Bashtannyk, D.M.
and Grunwald, G.K. (1996).

This dataset is challenging because the distribution of today’s temp.
varies across yesterday’s temp. values:

e temperatures following very hot days are bimodal, with the lower
mode corresponding to a ‘break’ in the temperature (i.e., a much
cooler temperature).

e The temperatures of days following 'normal’ days are unimodal.

This dataset allows for the illustration of the main features of each class
of Gaussian transform representations.



Empirical Illustration

o We illustrate the main features of the following three specifications

1. Linear-X and Spline-Y specification:
W(X) = (1,X)" and S(Y) includes a vector of cubic spline functions.

2. Spline-X and Linear-Y specification:
W(X) includes a vector of cubic spline functions and S(Y) = (1, Y)'.

3. Spline-Spline specification:
both W(X) and S(Y) include a vector of cubic spline functions.

e Specification 1 & 2: we estimate 9 models with 4 to 12 degrees of
freedom (increasing sequence of equispaced knots).

o Spline-Spline: we estimate 18 models, with 4 and 5 degrees of freedom
for splines in S(Y) and 4 to 12 degrees of freedom for splines in W(X).

e For each specification, select the model with smallest BIC.



CQFs: Linear-X, Spline-Y (BIC=19877)

Figure: No penalization (left) and adaptive Lasso (right). Quantile grid:
(0.01,0.05,0.1,...,0.95,0.99).



CQFs: Spline-X, Linear-Y (BIC=19425)

Figure: No penalization (left) and adaptive Lasso (right). Quantile grid:
(0.01,0.05,0.1,...,0.95,0.99).



CQFs: Spline-Spline (BIC=19350)

Figure: No penalization (left) and adaptive Lasso (right). Quantile grid:
(0.01,0.05,0.1,...,0.95,0.99).



Melbourne via Spline-Spline - Adaptive Lasso
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Conclusion

e Writing the estimation problem in the e = H(Y, X) form is convenient.

o Allows for the joint formulation of representations and an objective

function that preserve:

1.
2.

nonseparability,

monotonicity (both in finite-samples and under general
mispecification),

KLIC optimality, and

closed-form modeling of the Gaussian transform (= considerable
computational simplification).

o Wide range of natural applications and extensions.



