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1. Summary

This Supplementary Material presents further simulation results and an additional

empirical example for “Simultaneous Mean-Variance Regression”.

In Section 2 we give additional results for the simulations based on MacKinnon (2013)

in order to study further the finite-sample properties of MVR. We compare the finite-

sample inference performance of MVR, OLS and WLS when finite-sample correc-

tions are applied to the standard errors of each estimator. For completeness we also

replicate all experiments under the assumption that the conditional mean function

(CMF) is correctly specified and the variance is misspecified, imposing the simpli-

fications shown in equation (4.3) in the calculation of the MVR standard errors in

Theorem 6 of the main text. Overall we find that the favorable theoretical properties

of MVR translate into very substantial finite-sample gains over both OLS and WLS

in terms of estimation performance and largely improved inference. In summary, for

the numerical simulations based on MacKinnon (2013) the main findings are:

• MVR-based inference brings very large improvements relative to inference

based on the asymptotic heteroskedasticity-robust standard errors. We find

that in the presence of heteroskedasticity rejection probabilities for MVR are

much closer to nominal level than those for OLS and for WLS with misspec-

ified weights. These relative gains of MVR remain large when finite-sample

corrections of the standard errors are implemented for all estimators.

• MVR achieves the improvements above while simultaneously displaying tighter

confidence intervals in all designs for sample sizes large enough. When MVR

standard errors are calculated under the assumption that the CMF is correctly
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specified, then average MVR confidence interval lengths across simulations are

shorter than their OLS counterpart for all sample sizes and designs. They are

also shorter than their WLS counterpart with misspecified weights for sample

sizes large enough. The relative gains of MVR are then also larger when finite-

sample corrections of the standard errors are implemented for all estimators.

• The precision of MVR estimates in root mean squared error (RMSE) is

largely superior to OLS under heteroskedasticity and to WLS with misspecified

weights, with lower losses than WLS relative to OLS under homoskedasticity.

In Section 3 we give a full set of additional results for the reversal of fortune appli-

cation, reporting standard errors with finite-sample adjustments and with and with-

out assuming correct specification of the CMF. We find that in this example MVR

standard errors are robust to finite-sample corrections and standard errors assuming

correct specification of the CMF tend to be slightly smaller.

In Section 4, we report an additional empirical application to demand for gasoline

in the United States, and additional numerical simulations calibrated to this exam-

ple. In particular, we study the finite-sample approximation properties of MVR by

implementing simulations calibrated to the demand for gasoline empirical example

with a nonlinear CMF. Overall, all experiments confirm the favorable finite-sample

estimation, inference and approximation properties of MVR.

2. Additional Results for the Numerical Simulations Based on

MacKinnon (2013)

2.1. Finite-Sample Corrections. In this Section we compare rejection probabili-

ties and confidence intervals based on standard errors with finite-sample adjustments

proposed by MacKinnon and White (1985), for the numerical simulations in Section

5 of the main text. For an estimator β̃ of β, define the sample residuals ũi := yi−x′iβ̃,

i = 1, . . . , n. The first correction (HC1) uses a degrees-of-freedom adjustment by

rescaling the squared sample residuals by the factor n/(n − k) in the calculation of

the heteroskedasticity-robust standard errors. The second correction we consider ap-

proximates a jackknife estimator (HC3) for the robust variance-covariance matrix, as

suggested for small samples by Long and Ervin (2000), for instance, where for each

i = 1, . . . , n, the ith squared sample residual is rescaled by the factor 1/(1 − hi),
where hi is the ith element of the hat matrix Xn(X ′nXn)−1X ′n. The same corrections

are applied to the standard errors of OLS, WLS and MVR.
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As in the main text we consider rejection probabilities for β4. Figure 2.1 shows

that when degrees-of-freedom corrections (HC1) are implemented, the OLS and WLS

rejection probabilities improve but MVR-based inference continues to yield large im-

provements for all sample sizes in the presence of heteroskedasticity, with the excep-

tion of OLS rejection probability for n = 20 and α = 0.5 which is slightly lower than

its e-MVR counterpart (Figure 2.1(b)). Figures 2.2-2.3 compare rejection probabil-

ity curves when the HC3 correction is implemented. For clarity of representation

the curves for MVR and OLS/WLS are shown on different figures and the scale has

been modified compared to Figure 2.1. Overall, the rejection probabilities are largely

reduced for all estimators, and MVR-based inference continues to yield substantial

improvements in the presence of heteroskedasticity relative to both OLS and WLS.

The main exceptions are for n = 20, and partly for n = 40, where the OLS rejection

probability curves are not placed above the other curves and show rejection probabil-

ities closer to the nominal level than the corresponding MVR curves (Figures 2.2(b)

and (d)).

In order to further investigate the relative performance of MVR-based inference with

finite-sample corrections, Tables 1-4 report the ratio of average MVR confidence in-

terval lengths across simulations over the average OLS and WLS confidence interval

lengths for β4 for each sample size and value of heteroskedasticity index α, in per-

centage terms. Tables 1 and 3 show that the relatively larger average length of the

confidence intervals for `-MVR when n = 20 in Tables 4-5 in the main text is very

much reduced with finite-sample corrections. With HC3 corrections, Tables 2 and

4 show that in the presence of heteroskedasticity shorter average MVR confidence

interval lengths across simulations are obtained for all sample sizes and all designs,

except for e-MVR with α = 0.5. These results show that finite-sample corrections

substantially reduce the average MVR confidence interval lengths relative to both

OLS and WLS.

Although the finite-sample corrections for MVR should be regarded as experimental,

the simulation results we report indicate that additional improvements relative to

OLS and WLS can be achieved and should be explored further in future work.
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Figure 2.1. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC1 correction: MVR (solid lines), and OLS
and WLS (dashed lines). Sample sizes: 20 (black), 40 (red), 80 (green),
160 (blue), 320 (cyan), 640 (magenta), 1280 (grey).
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Figure 2.2. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC3 correction: MVR (solid lines), and OLS
(dashed lines). Sample sizes: 20 (black), 40 (red), 80 (green), 160
(blue), 320 (cyan), 640 (magenta), 1280 (grey).

5



0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(a) `-MVR.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(b) `-WLS.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(c) e-MVR.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(d) e-WLS.

Figure 2.3. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC3 correction: MVR (solid lines), and WLS
(dashed lines). Sample sizes: 20 (black), 40 (red), 80 (green), 160
(blue), 320 (cyan), 640 (magenta), 1280 (grey).
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`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 109.8 111.0 109.4 105.3 100.7 101.7 106.5 107.4 105.2 101.0
n = 40 106.0 107.7 103.6 95.6 87.0 101.7 107.0 105.9 99.9 90.8
n = 80 102.6 104.3 97.0 85.1 74.1 101.0 105.3 100.0 88.5 73.9
n = 160 101.4 101.5 90.0 74.8 63.3 100.7 103.0 92.7 76.3 59.1
n = 320 100.8 98.5 83.0 65.5 54.7 100.5 100.0 84.8 65.1 47.3
n = 640 100.4 95.2 76.2 57.4 47.4 100.2 96.3 77.0 55.6 38.1
n = 1280 100.3 92.1 70.1 50.5 41.1 100.2 93.0 70.3 47.9 31.1

Table 1. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 93.5 90.5 84.8 77.9 71.3 93.4 91.1 86.0 79.0 71.5
n = 40 97.9 93.9 84.9 74.2 64.2 98.6 94.7 86.0 75.3 63.9
n = 80 99.8 94.2 82.2 68.3 56.9 100.0 94.5 82.8 68.4 54.2
n = 160 100.5 93.0 77.7 61.5 50.0 100.4 93.3 78.1 60.8 45.1
n = 320 100.5 91.3 73.0 55.1 44.3 100.5 91.7 73.2 53.6 37.5
n = 640 100.3 89.5 68.7 49.8 39.6 100.3 89.9 68.6 47.7 31.7
n = 1280 100.3 87.7 64.4 44.8 35.1 100.2 88.0 64.1 42.2 26.8

Table 2. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction.
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`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 131.9 129.5 128.1 126.8 125.3 120.7 125.3 130.5 135.3 137.5
n = 40 123.1 118.1 116.3 114.9 111.9 110.3 115.8 122.6 128.6 129.2
n = 80 115.9 109.8 109.1 107.0 102.0 105.0 110.0 115.3 118.6 112.8
n = 160 111.0 105.4 106.2 101.8 95.7 102.6 106.5 108.4 107.0 96.0
n = 320 108.0 103.4 105.4 98.2 91.7 101.3 103.8 101.9 96.5 81.7
n = 640 105.3 102.7 105.1 95.3 88.2 100.6 101.1 95.7 87.0 70.1
n = 1280 103.4 102.7 104.9 93.0 85.0 100.4 98.9 90.5 79.4 60.9

Table 3. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 100.7 102.5 103.0 101.6 98.3 105.8 108.6 111.5 112.2 109.0
n = 40 101.3 105.3 106.2 103.5 97.7 104.7 107.5 110.1 109.9 103.9
n = 80 101.8 105.9 106.7 101.7 93.5 103.0 104.2 105.2 103.0 93.1
n = 160 101.7 105.6 106.6 98.6 89.3 101.9 101.2 99.3 94.1 81.0
n = 320 101.2 104.9 106.1 96.0 86.6 101.1 99.2 94.6 86.6 70.7
n = 640 100.9 104.1 105.7 93.4 82.8 100.6 97.5 90.1 79.6 62.0
n = 1280 100.6 103.6 105.3 91.1 79.2 100.4 96.0 86.4 74.2 55.4

Table 4. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction.
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2.2. Inference under Variance Misspecification. In order to complete this study

of the finite-sample performance of MVR inference relative to heteroskedasticity-

robust OLS and WLS inference, we also compare the rejection probabilities and the

lengths of the confidence intervals when MVR standard errors are calculated under the

assumption of correct specification of the CMF, imposing the simplifications shown

in equation (4.3) in the main text.

Figure 2.4 shows that the rejection probability curves for `-MVR and n = 20, 40
are now placed well above the curves for larger sample sizes. MVR leads to smaller

rejection probabilities than OLS for α ≥ 1 with n = 40, and in the presence of

heteroskedasticity for all larger sample sizes. The MVR curves are now closer to

WLS curves although the overall improvements remain substantial, in particular rel-

ative to e-WLS. The finite-sample corrections results in Figures 2.5-2.7 do not alter

substantially the main conclusions.

In terms of relative confidence interval lengths, Tables 5-7 show that assuming correct

specification of the CMF lead to average MVR confidence interval lengths that are

shorter for all sample sizes and designs compared to OLS. The degrees-of-freedom

corrections HC1 do not affect the relative length of the confidence intervals. Compared

to WLS, Tables 8-10 again show shorter average MVR confidence interval lengths for

n large enough and all designs where the conditional variance function is misspecified.

Overall these simulation results under correct specification of the CMF further il-

lustrate the large MVR finite-sample improvements for inference in heteroskedastic

designs.
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Figure 2.4. Rejection frequencies for asymptotic t tests calculated
with asymptotic standard errors under correct specification of the CMF:
MVR (solid lines), and OLS and WLS (dashed lines). Sample sizes: 20
(black), 40 (red), 80 (green), 160 (blue), 320 (cyan), 640 (magenta),
1280 (grey).
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Figure 2.5. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC1 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),
640 (magenta), 1280 (grey).

11



0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(a) `-MVR.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(b) OLS.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(c) e-MVR.

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

(d) OLS.

Figure 2.6. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC3 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),
640 (magenta), 1280 (grey).
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Figure 2.7. Rejection frequencies for asymptotic t tests calculated
with standard errors with HC3 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),
640 (magenta), 1280 (grey).
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`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 82.4 84.6 84.1 81.3 77.5 82.3 85.3 84.8 81.6 76.7
n = 40 86.6 91.5 90.3 84.4 76.8 89.2 93.0 91.1 85.0 76.1
n = 80 90.2 96.0 91.5 81.0 70.1 93.0 96.5 91.4 80.8 67.6
n = 160 93.3 97.5 88.0 73.4 61.6 95.4 97.4 87.9 72.7 56.7
n = 320 95.4 96.8 82.4 65.1 53.8 96.9 96.6 82.2 63.5 46.4
n = 640 97.1 94.4 76.1 57.1 46.6 98.0 94.4 75.7 54.9 37.8
n = 1280 98.3 91.8 70.1 50.2 40.4 98.8 91.8 69.6 47.5 30.9

Table 5. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding OLS counterpart. Confidence intervals con-
structed with asymptotic standard errors, assuming correct specifica-
tion of the CMF.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 82.4 84.6 84.1 81.3 77.5 82.3 85.3 84.8 81.6 76.7
n = 40 86.6 91.5 90.3 84.4 76.8 89.2 93.0 91.1 85.0 76.1
n = 80 90.2 96.0 91.5 81.0 70.1 93.0 96.5 91.4 80.8 67.6
n = 160 93.3 97.5 88.0 73.4 61.6 95.4 97.4 87.9 72.7 56.7
n = 320 95.4 96.8 82.4 65.1 53.8 96.9 96.6 82.2 63.5 46.4
n = 640 97.1 94.4 76.1 57.1 46.6 98.0 94.4 75.7 54.9 37.8
n = 1280 98.3 91.8 70.1 50.2 40.4 98.8 91.8 69.6 47.5 30.9

Table 6. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction, assuming correct
specification of the CMF.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 88.9 85.7 79.7 72.5 65.9 87.3 85.0 79.5 72.3 64.6
n = 40 93.1 88.8 80.1 69.5 59.9 93.3 88.9 80.1 69.3 58.0
n = 80 95.3 90.3 79.0 65.7 54.8 95.7 89.9 78.3 64.4 50.8
n = 160 96.7 90.5 76.1 60.4 49.3 97.1 89.9 75.1 58.5 43.6
n = 320 97.7 89.9 72.4 54.8 44.2 98.0 89.3 71.3 52.4 36.8
n = 640 98.3 88.9 68.5 49.7 39.8 98.6 88.4 67.5 47.1 31.5
n = 1280 98.9 87.4 64.4 44.8 35.5 99.0 87.1 63.5 41.9 26.6

Table 7. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction, assuming correct
specification of the CMF.
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`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 99.0 98.7 98.5 97.9 96.4 97.7 100.3 103.1 104.9 104.5
n = 40 100.5 100.4 101.4 101.4 98.7 96.8 100.7 105.5 109.4 108.3
n = 80 101.8 101.1 102.9 101.8 96.5 96.7 100.8 105.4 108.2 103.2
n = 160 102.2 101.3 103.8 99.9 93.1 97.2 100.8 102.7 102.0 92.2
n = 320 102.2 101.5 104.5 97.5 90.2 97.7 100.3 98.8 94.1 80.2
n = 640 101.9 101.9 104.9 94.8 86.8 98.4 99.1 94.1 85.9 69.5
n = 1280 101.3 102.3 104.9 92.5 83.5 98.9 97.7 89.6 78.8 60.6

Table 8. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding WLS counterpart. Confidence intervals con-
structed with asymptotic standard errors, assuming correct specifica-
tion of the CMF.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 99.0 98.7 98.5 97.9 96.4 97.7 100.3 103.1 104.9 104.5
n = 40 100.5 100.4 101.4 101.4 98.7 96.8 100.7 105.5 109.4 108.3
n = 80 101.8 101.1 102.9 101.8 96.5 96.7 100.8 105.4 108.2 103.2
n = 160 102.2 101.3 103.8 99.9 93.1 97.2 100.8 102.7 102.0 92.2
n = 320 102.2 101.5 104.5 97.5 90.2 97.7 100.3 98.8 94.1 80.2
n = 640 101.9 101.9 104.9 94.8 86.8 98.4 99.1 94.1 85.9 69.5
n = 1280 101.3 102.3 104.9 92.5 83.5 98.9 97.7 89.6 78.8 60.6

Table 9. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction, assuming correct
specification of the CMF.

`-MVR e-MVR

α 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 95.8 97.1 96.9 94.5 90.9 98.8 101.3 103.2 102.7 98.5
n = 40 96.3 99.6 100.1 97.0 91.2 99.0 101.0 102.4 101.1 94.3
n = 80 97.2 101.5 102.7 97.9 90.1 98.6 99.2 99.5 96.9 87.3
n = 160 97.8 102.7 104.5 97.0 88.1 98.5 97.5 95.5 90.6 78.2
n = 320 98.4 103.3 105.2 95.5 86.5 98.6 96.7 92.2 84.7 69.4
n = 640 98.9 103.3 105.4 93.3 83.4 98.9 95.8 88.8 78.7 61.5
n = 1280 99.1 103.2 105.3 91.2 80.0 99.1 94.9 85.6 73.6 55.2

Table 10. Ratio (×100) of MVR average confidence interval lengths
for β4 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction, assuming correct
specification of the CMF.
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3. Reversal of Fortune: Additional Results

We complement the analysis for the reversal of fortune empirical application in the

main text by reporting standard errors with finite-sample corrections (HC1 and HC3

as described in Section 2.1) and results for WLS in Table 11. The exponential scale

specification, e-WLS, cannot be used in this empirical application due to several

regressors taking value zero for some observations, so that the log transformation

cannot be applied to those regressors. Thus we only report the results for WLS with

linear scale, `-WLS.

The results in Table 11 further strengthen the main conclusions in the main text

with all standard errors increasing slightly when finite-sample corrections are applied,

except for MVR when the Americas are dropped (Panel (3)) where the urbanization

in 1500 coefficient remains insignificant. For WLS we find that the magnitude of WLS

coefficients is smaller than MVR point estimates (except for Panel (3)). In addition to

specifications (3), (4), (6) and (9), specification (5) is also found to be not statistically

significant with WLS, due to a large drop in the coefficient estimated value relative

to both OLS and MVR.

We also report MVR standard errors assuming correct specification of the CMF with

and without finite-sample corrections in Table 12. The results confirm that in this

example MVR standard errors are robust to finite-sample corrections, and standard

errors assuming correct specification of the CMF tend to be slightly smaller.

Overall, we find that our main qualitative conclusions are robust to implementing

finite-sample corrections and assuming that the CMF is correctly specified in the

calculation of standard errors. Although the numerical simulations in Section 5 of the

main text and Section 2 suggest some caution in using `-WLS inference in such small

samples, the results in Tables 11-12 provide additional evidence that the relationship

between urbanization in 1500 and GDP per capita in 1995 (PPP basis) is weaker and

less robust that found using OLS.
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4. Demand for Gasoline in the United States

4.1. Empirical Application. To illustrate our methods further, we consider a sec-

ond empirical application to the parametric approximation of demand for gasoline

in the United States. We use the same data set as in Blundell, Horowitz and Parey

(2012), which comes from the 2001 National Household Travel Survey, conducted

between March 2001 and May 20021. Blundell, Horowitz and Parey (2012) perform

both parametric and nonparametric estimation of the average demand function, and

provide evidence of nonlinearities. The data set for their main specifications is large,

with a sample of 5254 individual households, and contains household level variables,

including gasoline price and consumption, and demographic characteristics. We use

these features of the data set to compare the approximation properties of MVR and

OLS , to implement our inference methods under misspecification and to calibrate

our numerical simulations.

We consider an MVR approximation for the demand for gasoline function

Y = β0 +X1β1 +X2β2 +X ′3β3 + s(γ0 +X1γ1 +X2γ2 +X ′3γ3)e,

where e satisfies the orthogonality conditions E[Xe] = 0 and E[Xs1(X ′γ)(e2−1)] = 0,

with X = (1, X1, X2, X
′
3)′ and γ = (γ0, γ1, γ2, γ

′
3)′. We take the outcome Y to be log

gasoline annual consumption in gallons, X1 is log average price in dollars per gallon in

county of residence, and X2 is log income in dollars with each household assigned to

1 of 18 income groups. Following Blundell, Horowitz and Parey (2012), the baseline

specification only includes log price and log income, and further covariates are added

in other specifications. The vector of additional controls X3 includes the log of age of

household respondent, household size, number of drivers and workers in the household

(specification (2)), as well as a dummy for public transport availability (specification

(3)), 4 urbanity dummies (specification (4)), 8 population density dummies and 9

regional dummies (specification (5)).

Table 13 reports estimates and standard errors for the average price and income elas-

ticities obtained by OLS, `-MVR and e-MVR across the 5 linear specifications. In

the baseline specification, MVR price elasticities are −0.89 and exactly coincide with

the average price elasticity found by Yatchew and No (2001) and West (2004), and

differ slightly from the OLS point estimate −0.93 in this sample. For specifications

(1)-(4), MVR price elasticities are slightly smaller than OLS estimates, and the price

1See Blundell, Horowitz and Parey (2012) and ONRL (2004) for a detailed description of the data.
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Dependent variable is log of annual household gasoline
demand in gallons

Log price coefficient β̂1 Log income coefficient β̂2

OLS `-MVR e-MVR OLS `-MVR e-MVR

(1) Baseline specification
-0.925 -0.892 -0.888 0.289 0.283 0.283
(0.150) (0.144) (0.144) (0.0190) (0.0173) (0.0172)

(2) With demographics
-0.879 -0.857 -0.854 0.246 0.244 0.244
(0.143) (0.137) (0.137) (0.0183) (0.0169) (0.0167)

(3) With demographics and public transports
-0.830 -0.820 -0.816 0.269 0.268 0.268
(0.143) (0.137) (0.137) (0.0187) (0.0172) (0.0171)

(4) With demographics, public transports and urbanity
-0.495 -0.483 -0.478 0.298 0.301 0.301
(0.141) (0.135) (0.134) (0.0190) (0.0174) (0.0173)

(5) With demographics, public transports, urbanity
and regions

-0.358 -0.415 -0.408 0.297 0.302 0.302
(0.270) (0.256) (0.256) (0.0199) (0.0181) (0.0181)

Table 13. Demand for gasoline. Asymptotic heteroskedasticity-
robust OLS standard errors and MVR standard errors are in paren-
thesis.

elasticity drops sharply in specification (4) which adds indicators for urbanity and

population density. Adding regional dummies (Panel (5)) results in a further reduc-

tion in price elasticities and a loss of significance, although to a much smaller extent

for MVR estimates2. Given the large sample size, it is interesting to note that for all

specifications MVR and OLS standard errors still differ, with MVR standard errors

2The p-values for price elasticities increase to 0.185 for OLS and to 0.105 and 0.111 for MVR
estimates.
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smaller than heteroskedasticity-corrected OLS standard errors, which is a reflection

of the heteroskedasticity detected for all specifications3.

4.2. Numerical Simulations. We assess and illustrate the finite-sample properties

of our estimators in a Monte Carlo experiment calibrated to our second empirical

example. Our models feature a linear CMF, and we implement OLS and MVR with

linear and exponential scale functions.

The explanatory variables included in the simulations are chosen according to speci-

fication (4) in the demand for gasoline example, the preferred linear specification in

Blundell, Horowitz and Parey (2012) (the log price coefficient is no longer significant

in specification (5)). We report estimation and inference simulation results for log

price and log income, but include all covariates in the simulations. All designs are

calibrated to specification (4) by Gaussian maximum likelihood.

Design LOC. Our first design is the homoskedastic model

Y = β0 +X1β1 +X2β2 +X ′3β3 + σε, ε ∼ N (0, 1).

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions

Y = β0 +X1β1 +X2β2 +X ′3β3 + (X ′γ)αε, ε ∼ N (0, 1), α ∈ {0.5, 1, 1.5, 2}.

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions

Y = β0 +X1β1 +X2β2 +X ′3β3 + exp(X ′γ)αε, ε ∼ N (0, 1), α ∈ {0.5, 1, 1.5, 2}.

For all experiments, we set the sample size to n = 500, 1000, and 5254, the sample

size in the empirical application, and 5000 simulations are performed. For n = 5254,

we fix X to the values in the data set, whereas for the smaller sample sizes we draw

X with replacement from the values in the data set and keep them fixed across

replications. The location design LOC serves as a benchmark for comparing the

relative performance of MVR and OLS when OLS is efficient. For α = 1, `-MVR

is correctly specified for the design LIN, and e-MVR is correctly specified for design

EXP. Designs with α = 0.5 feature low heteroskedasticity, whereas α = 2 corresponds

to high heteroskedasticity.

3For each specification we implemented the tests of Breusch and Pagan (1979), White (1980) and
Koenker (1981)) for heteroskedasticity for OLS and the MVR-based test introduced in Section 4 of
the main text. All tests reject the null of homoskedasticity for all specifications.
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Design LOC LIN EXP

α 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coefficient β̂1

`-MVR
n = 500 102.1 100.5 96.0 89.0 80.6 100.6 96.1 89.0 80.3
n = 1000 100.5 98.7 93.6 85.4 75.0 98.8 93.6 85.3 75.2
n = 5254 100.1 98.5 93.4 85.2 74.5 98.5 93.4 84.9 73.8

e-MVR
n = 500 102.1 100.4 95.9 89.1 80.5 100.4 95.8 88.7 79.5
n = 1000 100.5 98.7 93.6 85.9 76.4 98.7 93.5 85.3 74.8
n = 5254 100.1 98.5 93.6 86.0 76.5 98.5 93.4 85.1 74.3

Log income coefficient β̂2

`-MVR
n = 500 101.6 99.6 93.7 85.1 75.1 99.4 92.8 82.9 71.2
n = 1000 101.4 98.2 89.4 77.0 63.5 97.4 86.0 70.3 53.9
n = 5254 100.3 96.8 88.1 76.2 63.2 96.0 85.2 70.6 55.3

e-MVR
n = 500 101.7 99.8 93.8 84.8 73.9 99.6 92.6 81.9 68.8
n = 1000 101.4 98.3 89.1 75.8 61.1 97.3 84.9 67.4 48.9
n = 5254 100.3 96.7 87.6 74.9 61.0 95.8 84.0 67.7 50.4

Table 14. Ratio (×100) of MVR RMSE for β1 and β2 over corre-
sponding OLS counterpart.

Table 14 reports a first set of results regarding the accuracy of our estimators. We

report the ratios of RMSEs for β1 and β2 of `-MVR and e-MVR over RMSEs of OLS, in

percentage terms. The results show that MVR estimators achieve large gains relative

to OLS in the presence of heteroskedasticity, with ratios that reach 73.8 for β̂1 and 50.4
for β̂2 under heteroskedasticity, with e-MVR outperforming `-MVR slightly in this

example. Gains in estimation precision increase with the degree of heteroskedasticity

and sample size. In the homoskedastic case where OLS is efficient, there is close to

no loss in precision from using MVR, with ratios ranging from 100.1 to 102.1. OLS

and MVR become equivalent as sample size increases for the homoskedastic case.

Table 15 reports ratios of `-MVR and e-MVR average confidence interval lengths

across simulations for β1 and β2 over OLS average confidence interval lengths, in

percentage terms. In these simulations MVR yields substantially tighter confidence
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Design LOC LIN EXP

α 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coefficient β̂1

`-MVR
n = 500 98.8 98.1 96.1 92.8 88.6 98.1 96.1 92.8 88.3
n = 1000 99.2 98.3 95.8 91.6 86.0 98.3 95.8 91.6 85.7
n = 5254 99.8 98.9 96.3 91.9 86.0 98.9 96.3 91.8 85.6

e-MVR
n = 500 98.6 97.9 95.8 92.5 88.1 97.9 95.8 92.3 87.5
n = 1000 99.1 98.3 95.8 92.0 86.9 98.3 95.8 91.6 85.9
n = 5254 99.8 98.9 96.4 92.4 87.2 98.9 96.3 91.9 85.9

Log income coefficient β̂2

`-MVR
n = 500 98.9 98.2 95.5 91.3 86.3 98.0 95.0 90.1 84.0
n = 1000 99.2 98.0 93.9 87.7 80.1 97.5 92.3 84.1 74.4
n = 5254 99.8 98.3 93.9 87.5 79.9 97.9 92.4 84.3 74.7

e-MVR
n = 500 98.7 97.8 94.9 90.4 84.6 97.7 94.3 88.8 81.6
n = 1000 99.1 97.8 93.5 86.8 78.5 97.3 91.5 82.2 70.8
n = 5254 99.8 98.2 93.6 86.8 78.4 97.8 91.7 82.5 71.4

Table 15. Ratio (×100) of MVR average confidence interval lengths
for β1 and β2 over corresponding OLS counterpart. Confidence intervals
constructed with asymptotic standard errors.

intervals compared to OLS in the presence of heteroskedasticity, with confidence in-

terval lengths ratios that reach 78.4 for β̂1 and 70.8 for β̂2, while not incurring any loss

in precision for the homoskedastic data generating process. The relative performance

of e-MVR improves with the degree of heteroskedasticity.

For completeness we also report results for confidence intervals constructed assum-

ing correct specification of the CMF. Table 16 reports ratios of `-MVR and e-MVR

average confidence interval lengths across simulations for β1 and β2 over OLS aver-

age confidence interval lengths, in percentage terms. MVR confidence intervals are

slightly more favorable to MVR compared to the results obtained with standard er-

rors robust to mean misspecification reported in Table 15, while not incurring any

loss in precision for the homoskedastic data generating process.
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Design LOC LIN EXP

α 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coefficient β̂1

`-MVR
n = 500 96.8 96.1 93.9 90.5 86.0 96.1 94.0 90.5 85.8
n = 1000 98.4 97.6 95.0 90.7 84.7 97.6 95.0 90.6 84.5
n = 5254 99.7 98.8 96.2 91.8 85.8 98.8 96.2 91.7 85.4

e-MVR
n = 500 97.4 96.3 94.2 91.0 86.7 96.3 94.2 90.8 86.1
n = 1000 98.6 97.6 95.2 91.4 86.4 97.6 95.2 91.1 85.4
n = 5254 99.7 98.8 96.3 92.4 87.1 98.8 96.2 91.9 85.8

Log income coefficient β̂2

`-MVR
n = 500 96.5 95.8 93.1 88.9 83.7 95.7 92.7 87.8 81.8
n = 1000 98.1 97.1 93.2 87.0 79.5 96.7 91.6 83.6 74.0
n = 5254 99.7 98.2 93.8 87.4 79.8 97.8 92.3 84.2 74.7

e-MVR
n = 500 97.1 95.8 92.9 88.4 82.7 95.6 92.3 86.9 79.9
n = 1000 98.6 97.0 92.7 86.0 77.8 96.5 90.7 81.6 70.4
n = 5254 99.7 98.1 93.5 86.7 78.4 97.7 91.7 82.5 71.4

Table 16. Ratio (×100) of MVR average confidence interval lengths
for β1 and β2 over corresponding OLS counterpart. Confidence intervals
constructed with asymptotic standard errors assuming correct specifi-
cation of the CMF.

4.3. Additional Simulations: Nonlinear CMF. We present the results of a sec-

ond set of experiments in which we compare the approximation properties of MVR to

those of OLS under misspecification of the CMF, in RMSE. The designs of our sim-

ulations are modified to incorporate a nonlinear relationship between X1 (log price)

and Y (log gasoline annual consumption). We specify the nonlinear relationship in

X1 by means of trigonometric basis functions

f(x1, δ1) = δ11x1 + δ12 sin(2πx1) + δ13 cos(2πx1) + δ14 sin(4πx1) + δ15 cos(4πx1).

All designs are calibrated to specification (4) by Gaussian maximum likelihood.

Design LOC. Our first design is the homoskedastic model

Y = β0 + f(X1, β1) +X2β2 +X ′3β3 + σε.
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Design LOC LIN EXP

α 0 0.5 1 1.5 2 0.5 1 1.5 2

`-MVR
n = 500 101.2 100.9 100.0 98.5 96.5 100.9 100.0 98.6 96.5
n = 1000 100.7 100.0 97.9 94.6 90.1 100.0 97.9 94.1 88.9
n = 5254 100.1 99.6 97.8 95.0 91.6 99.5 97.5 94.1 89.6

e-MVR
n = 500 100.8 100.6 99.9 98.6 96.8 100.6 99.8 98.3 96.2
n = 1000 100.6 99.9 97.8 94.5 90.2 99.9 97.7 93.8 88.3
n = 5254 100.1 99.6 97.8 95.0 91.6 99.5 97.4 93.9 89.1

Table 17. Ratio (×100) of average MVR RMSE for µ(x) over corre-
sponding OLS counterpart.

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions

Y = β0+f(X1, β1)+X2β2+X ′3β3+s(γ0+f(X1, γ1)+X2γ2+X ′3γ3)αε, α ∈ {0.5, 1, 1.5, 2}.

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions

Y = β0+f(X1, β1)+X2β2+X ′3β3+s(γ0+f(X1, γ1)+X2γ2+X ′3γ3)αε, α ∈ {0.5, 1, 1.5, 2}.

where ε ∼ N (0, 1). For all designs we implement MVR and OLS for the same sample

sizes and X values as in Section 4.2, with the number of simulations set to 5000.

Table 17 reports results regarding the accuracy of OLS and MVR linear approxima-

tions of the µ(x, β) = β0 + f(x1, β1) + x2β2 + x′3β3, evaluated at the n sample values

x1i of X1, and at fixed values of the remaining variables.4 For each data generating

process we report the ratios of average estimation errors across simulations of `-MVR

and e-MVR relative to OLS in percentage terms. Estimation errors are measured for

each simulation in RMSE, and then averaged across simulations.

In these simulations MVR yields more accurate approximation of nonlinear CMFs

than OLS, measured in RMSE. Thus, in presence of heteroskedasticity the minimum

4The non binary variables X2, X31, . . . X34, are evaluated at their modal values. These variables
are the log of household income, age of household respondent, household size, number of drivers
and workers in the household, respectively. We fix the value of the remaining indicators for public
transport availability, urbanity and population density included in X3 to one.
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mean squared error OLS property does not necessarily translate into more accurate

CMF approximation in finite samples relative to MVR.

References

Blundell, R., Horowitz, J. & Parey, M. (2012). Measuring the Price Respon-

siveness of Gasoline Demand: Economic Shape Restrictions and Nonparametric

Demand Estimation. Quantitative Economics 3, pp. 29–51.

Breusch, T. S. and Pagan, A. R. (1979). A Simple Test for Heteroscedasticity

and Random Coefficient Variation. Econometrica (47, September), pp. 1287–1294.

Koenker, R. (1981). A Note on Studentizing a Test for Heteroscedasticity. Journal

of Econometrics 17, pp. 107–112.

Long, J. S. and Ervin, L. H. (2000). Using Heteroscedasticity Consistent Standard

Errors in the Linear Regression Model. The American Statistician 54, pp. 217–224.

MacKinnon, J. G. (2013). Thirty Years of Heteroskedasticity-Robust Inference.

In Recent advances and future directions in causality, prediction, and specification

analysis, pp. 437-461. Springer, New York, NY.

MacKinnon, J. G. and White, H. (1985). Some Heteroskedasticity-Consistent

Covariance Matrix Estimators with Improved Finite Sample Properties. Journal of

Econometrics 29, pp. 305–325.

ONRL (2004). 2001 National Household Travel Survey. User’s Guide, Oak Ridge

National Laboratory.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator

and a Direct Test for Heteroskedasticity. Econometrica (48, May), pp. 817–838.

West, S. (2004). Distributional Effects of Alternative Vehicle Pollution Control

Policies. Journal of Public Economics 88, pp. 735–757.

Yatchew, A. and No, J. A. (2001). Household Gasoline Demand in Canada.

Econometrica (69, November), pp. 1697–1709.

26


	1. Summary
	2. Additional Results for the Numerical Simulations Based on MacKinnon (2013)
	2.1. Finite-Sample Corrections
	2.2. Inference under Variance Misspecification

	3. Reversal of Fortune: Additional Results
	4. Demand for Gasoline in the United States
	4.1. Empirical Application
	4.2. Numerical Simulations
	4.3. Additional Simulations: Nonlinear CMF

	References

