SUPPLEMENTARY MATERIAL FOR
“SIMULTANEOUS MEAN-VARIANCE REGRESSION”

RICHARD H. SPADYT AND SAMI STOULI?

1. SUMMARY

This Supplementary Material presents further simulation results and an additional

empirical example for “Simultaneous Mean-Variance Regression”.

In Section 2 we give additional results for the simulations based on MacKinnon (2013)
in order to study further the finite-sample properties of MVR. We compare the finite-
sample inference performance of MVR, OLS and WLS when finite-sample correc-
tions are applied to the standard errors of each estimator. For completeness we also
replicate all experiments under the assumption that the conditional mean function
(CMF) is correctly specified and the variance is misspecified, imposing the simpli-
fications shown in equation (4.3) in the calculation of the MVR standard errors in
Theorem 6 of the main text. Overall we find that the favorable theoretical properties
of MVR translate into very substantial finite-sample gains over both OLS and WLS
in terms of estimation performance and largely improved inference. In summary, for

the numerical simulations based on MacKinnon (2013) the main findings are:

e MVR-based inference brings very large improvements relative to inference
based on the asymptotic heteroskedasticity-robust standard errors. We find
that in the presence of heteroskedasticity rejection probabilities for MVR are
much closer to nominal level than those for OLS and for WLS with misspec-
ified weights. These relative gains of MVR remain large when finite-sample
corrections of the standard errors are implemented for all estimators.

e MVR achieves the improvements above while simultaneously displaying tighter
confidence intervals in all designs for sample sizes large enough. When MVR
standard errors are calculated under the assumption that the CMF is correctly
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specified, then average MVR confidence interval lengths across simulations are
shorter than their OLS counterpart for all sample sizes and designs. They are
also shorter than their WLS counterpart with misspecified weights for sample
sizes large enough. The relative gains of MVR are then also larger when finite-
sample corrections of the standard errors are implemented for all estimators.
e The precision of MVR estimates in root mean squared error (RMSE) is
largely superior to OLS under heteroskedasticity and to WLS with misspecified
weights, with lower losses than WLS relative to OLS under homoskedasticity.

In Section 3 we give a full set of additional results for the reversal of fortune appli-
cation, reporting standard errors with finite-sample adjustments and with and with-
out assuming correct specification of the CMF. We find that in this example MVR
standard errors are robust to finite-sample corrections and standard errors assuming

correct specification of the CMF tend to be slightly smaller.

In Section 4, we report an additional empirical application to demand for gasoline
in the United States, and additional numerical simulations calibrated to this exam-
ple. In particular, we study the finite-sample approximation properties of MVR by
implementing simulations calibrated to the demand for gasoline empirical example
with a nonlinear CMF. Overall, all experiments confirm the favorable finite-sample

estimation, inference and approximation properties of MVR.

2. ADDITIONAL RESULTS FOR THE NUMERICAL SIMULATIONS BASED ON
MACKINNON (2013)

2.1. Finite-Sample Corrections. In this Section we compare rejection probabili-
ties and confidence intervals based on standard errors with finite-sample adjustments
proposed by MacKinnon and White (1985), for the numerical simulations in Section
5 of the main text. For an estimator 3 of 3, define the sample residuals @; := 1; — x;B ,
i = 1,...,n. The first correction (HC1) uses a degrees-of-freedom adjustment by
rescaling the squared sample residuals by the factor n/(n — k) in the calculation of
the heteroskedasticity-robust standard errors. The second correction we consider ap-
proximates a jackknife estimator (HC3) for the robust variance-covariance matrix, as
suggested for small samples by Long and Ervin (2000), for instance, where for each
i = 1,...,n, the ith squared sample residual is rescaled by the factor 1/(1 — h;),
where h; is the ith element of the hat matrix X,,(X/ X,,)"'X/. The same corrections

are applied to the standard errors of OLS, WLS and MVR.



As in the main text we consider rejection probabilities for £,. Figure 2.1 shows
that when degrees-of-freedom corrections (HC1) are implemented, the OLS and WLS
rejection probabilities improve but MVR-based inference continues to yield large im-
provements for all sample sizes in the presence of heteroskedasticity, with the excep-
tion of OLS rejection probability for n = 20 and o = 0.5 which is slightly lower than
its e-MVR counterpart (Figure 2.1(b)). Figures 2.2-2.3 compare rejection probabil-
ity curves when the HC3 correction is implemented. For clarity of representation
the curves for MVR and OLS/WLS are shown on different figures and the scale has
been modified compared to Figure 2.1. Overall, the rejection probabilities are largely
reduced for all estimators, and MVR-based inference continues to yield substantial
improvements in the presence of heteroskedasticity relative to both OLS and WLS.
The main exceptions are for n = 20, and partly for n = 40, where the OLS rejection
probability curves are not placed above the other curves and show rejection probabil-

ities closer to the nominal level than the corresponding MVR curves (Figures 2.2(b)
and (d)).

In order to further investigate the relative performance of MVR-based inference with
finite-sample corrections, Tables 1-4 report the ratio of average MVR confidence in-
terval lengths across simulations over the average OLS and WLS confidence interval
lengths for (3, for each sample size and value of heteroskedasticity index «, in per-
centage terms. Tables 1 and 3 show that the relatively larger average length of the
confidence intervals for /-MVR when n = 20 in Tables 4-5 in the main text is very
much reduced with finite-sample corrections. With HC3 corrections, Tables 2 and
4 show that in the presence of heteroskedasticity shorter average MVR confidence
interval lengths across simulations are obtained for all sample sizes and all designs,
except for e-MVR with o = 0.5. These results show that finite-sample corrections

substantially reduce the average MVR confidence interval lengths relative to both

OLS and WLS.

Although the finite-sample corrections for MVR should be regarded as experimental,
the simulation results we report indicate that additional improvements relative to
OLS and WLS can be achieved and should be explored further in future work.
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FIGURE 2.1. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC1 correction: MVR (solid lines), and OLS
and WLS (dashed lines). Sample sizes: 20 (black), 40 (red), 80 (green),
160 (blue), 320 (cyan), 640 (magenta), 1280 (grey).
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FIGURE 2.2. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC3 correction: MVR (solid lines), and OLS
(dashed lines). Sample sizes: 20 (black), 40 (red), 80 (green), 160
(blue), 320 (cyan), 640 (magenta), 1280 (grey).
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FI1GURE 2.3. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC3 correction: MVR (solid lines), and WLS

(dashed lines).

Sample sizes: 20 (black), 40 (red), 80 (green), 160

(blue), 320 (cyan), 640 (magenta), 1280 (grey).




(-MVR e-MVR
o} 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n = 20 109.8 111.0 109.4 105.3 100.7  101.7 106.5 107.4 105.2 101.0
n = 40 106.0 107.7 103.6 95.6 87.0 101.7 107.0 105.9 99.9 90.8
n = 80 102.6 104.3 97.0 851 741 101.0 105.3 100.0 88.5 73.9
n = 160 101.4 101.5 90.0 74.8 63.3 100.7 103.0 92.7 76.3 59.1
n = 320 100.8 985 83.0 655 54.7 100.5 100.0 84.8 65.1 47.3
n = 640 100.4 95.2 76.2 574 474 100.2 96.3 770 55.6 38.1
n=1280 100.3 92.1 70.1 50.5 41.1 100.2 93.0 70.3 479 31.1

TABLE 1. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction.

¢-MVR e-MVR
o) 0 05 1 1.5 2 0 0.5 1 1.5 2
n = 20 93.5 90.5 848 779 T1.3 934 91.1 8.0 79.0 71.5
n = 40 97.9 939 849 742 64.2 98.6 94.7 8.0 75.3 63.9
n = 80 99.8 942 822 68.3 56.9 100.0 945 82.8 684 54.2
n = 160 100.5 93.0 77.7 61.5 50.0 100.4 93.3 78.1 60.8 45.1
n = 320 100.5 91.3 73.0 55.1 44.3  100.5 91.7 73.2 53.6 37.5
n = 640 100.3 89.5 68.7 49.8 39.6 100.3 89.9 68.6 47.7 31.7
n=1280  100.3 87.7 64.4 448 351 100.2 88.0 64.1 42.2 26.8

TABLE 2. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction.



(-MVR e-MVR

o} 0 0.5 1 1.5 2 0 0.5 1 1.5

2

n = 20 131.9 129.5 128.1 126.8 125.3  120.7 125.3 130.5 135.3 137.5
n = 40 123.1 118.1 116.3 1149 1119 1103 1158 122.6 128.6 129.2
n = 80 1159 109.8 109.1 107.0 102.0  105.0 110.0 115.3 118.6 112.8
n = 160 111.0 105.4 106.2 101.8 95.7 102.6 106.5 108.4 107.0 96.0

n =320 108.0 103.4 1054 98.2 91.7 101.3 103.8 101.9 96.5 81.7
n = 640 105.3 102.7 105.1 95.3 88.2 100.6 101.1 95.7 87.0 70.1
n=1280  103.4 102.7 1049 93.0 85.0 100.4 98.9 90.5 79.4 60.9
TABLE 3. Ratio (x100) of MVR average confidence interval lengths
for 54 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction.
-MVR e-MVR
« 0 0.5 1 1.5 2 0 0.5 1 1.5 2
n =20 100.7 102.5 103.0 101.6 98.3  105.8 108.6 111.5 112.2 109.0
n = 40 101.3 105.3 106.2 103.5 97.7 104.7 107.5 110.1 109.9 103.9
n = 80 101.8 105.9 106.7 101.7 93.5  103.0 104.2 105.2 103.0 93.1
n = 160 101.7 105.6 106.6 98.6 89.3 101.9 101.2 99.3 94.1 81.0
n =320 101.2 104.9 106.1 96.0 86.6 101.1 99.2 94.6 86.6 70.7
n = 640 100.9 104.1 105.7 934 828 100.6 97.5 90.1 79.6 62.0
n=1280 100.6 103.6 105.3 91.1 79.2 100.4 96.0 86.4 74.2 554

TABLE 4. Ratio (x100) of MVR average confidence interval lengths
for 8, over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction.



2.2. Inference under Variance Misspecification. In order to complete this study
of the finite-sample performance of MVR inference relative to heteroskedasticity-
robust OLS and WLS inference, we also compare the rejection probabilities and the
lengths of the confidence intervals when MVR standard errors are calculated under the
assumption of correct specification of the CMF, imposing the simplifications shown

in equation (4.3) in the main text.

Figure 2.4 shows that the rejection probability curves for .-MVR and n = 20,40
are now placed well above the curves for larger sample sizes. MVR leads to smaller
rejection probabilities than OLS for o« > 1 with n = 40, and in the presence of
heteroskedasticity for all larger sample sizes. The MVR curves are now closer to
WLS curves although the overall improvements remain substantial, in particular rel-
ative to e-WLS. The finite-sample corrections results in Figures 2.5-2.7 do not alter

substantially the main conclusions.

In terms of relative confidence interval lengths, Tables 5-7 show that assuming correct
specification of the CMF lead to average MVR confidence interval lengths that are
shorter for all sample sizes and designs compared to OLS. The degrees-of-freedom
corrections HC1 do not affect the relative length of the confidence intervals. Compared
to WLS, Tables 8-10 again show shorter average MVR confidence interval lengths for

n large enough and all designs where the conditional variance function is misspecified.

Overall these simulation results under correct specification of the CMF further il-
lustrate the large MVR finite-sample improvements for inference in heteroskedastic

designs.
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FIGURE 2.4. Rejection frequencies for asymptotic ¢ tests calculated
with asymptotic standard errors under correct specification of the CMF:
MVR (solid lines), and OLS and WLS (dashed lines). Sample sizes: 20
(black), 40 (red), 80 (green), 160 (blue), 320 (cyan), 640 (magenta),
1280 (grey).
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FIGURE 2.5. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC1 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),

640 (magenta), 1280 (grey).
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FIGURE 2.6. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC3 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),

640 (magenta), 1280 (grey).
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FIGURE 2.7. Rejection frequencies for asymptotic ¢ tests calculated
with standard errors with HC3 correction, under correct specification
of the CMF: MVR (solid lines), and OLS and WLS (dashed lines).
Sample sizes: 20 (black), 40 (red), 80 (green), 160 (blue), 320 (cyan),

640 (magenta), 1280 (grey).




(-MVR e-MVR

o 0 0.5 1 1.5 2 0 0.5 1 1.5 2

n = 20 824 84.6 84.1 81.3 775 823 853 848 81.6 T76.7
n = 40 86.6 91.5 90.3 844 76.8 89.2 93.0 91.1 85.0 76.1
n = 80 90.2 96.0 91.5 81.0 70.1  93.0 96.5 914 80.8 67.6
n = 160 93.3 975 88.0 734 61.6 954 974 879 T2.7 56.7
n = 320 954 96.8 824 651 538 969 96.6 822 63.5 464
n = 640 97.1 944 76.1 571 46.6 98.0 944 757 549 378
n=1280 983 91.8 70.1 50.2 404 98.8 91.8 69.6 47.5 30.9

TABLE 5. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding OLS counterpart. Confidence intervals con-
structed with asymptotic standard errors, assuming correct specifica-

tion of the CMF.

¢-MVR e-MVR

o 0 05 1 1.5 2 0 05 1 1.5 2

n = 20 824 84.6 84.1 81.3 775 823 853 848 816 T76.7
n = 40 86.6 91.5 90.3 844 76.8 892 93.0 91.1 85.0 76.1
n = 80 90.2 96.0 91.5 81.0 70.1  93.0 96.5 914 80.8 67.6
n = 160 93.3 975 88.0 734 61.6 954 974 879 T2.7 56.7
n = 320 954 96.8 824 651 538 969 96.6 82.2 63.5 464
n = 640 97.1 944 76.1 571 46.6 98.0 944 7T5.7 549 378
n=1280 983 91.8 70.1 50.2 404 98.8 91.8 69.6 47.5 30.9

TABLE 6. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC1 correction, assuming correct
specification of the CMF.

¢-MVR e-MVR

o) 0 05 1 1.5 2 0 05 1 1.5 2

n = 20 88.9 85.7 79.7 725 659 873 85.0 795 723 64.6
n = 40 93.1 838 80.1 69.5 59.9 93.3 8.9 80.1 69.3 58.0
n = 80 95.3 90.3 79.0 65.7 54.8 95.7 89.9 783 644 50.8
n = 160 96.7 90.5 76.1 60.4 49.3 97.1 899 75.1 585 43.6
n = 320 97.7 89.9 724 548 442 98.0 893 T1.3 524 36.8
n = 640 98.3 88.9 685 49.7 398 98.6 834 675 47.1 31.5
n=1280 989 874 644 44.8 355 99.0 87.1 63.5 41.9 26.6

TABLE 7. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding OLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction, assuming correct
specification of the CMF.
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(-MVR e-MVR

o 0 0.5 1 1.5 2 0 0.5 1 1.5 2

n =20 99.0 98.7 985 979 964  97.7 100.3 103.1 104.9 104.5
n = 40 100.5 100.4 101.4 1014 98.7  96.8 100.7 105.5 109.4 108.3
n = 80 101.8 101.1 102.9 101.8 96.5 96.7 100.8 105.4 108.2 103.2
n = 160 102.2 101.3 103.8 99.9 93.1 97.2 100.8 102.7 102.0 922
n = 320 102.2 101.5 1045 975 90.2 97.7 100.3 98.8 94.1 80.2
n = 640 101.9 101.9 1049 948 86.8 984 99.1 941 859 69.5
n=1280 101.3 102.3 1049 92,5 835 989 97.7 896 788 60.6

TABLE 8. Ratio (x100) of MVR average confidence interval lengths
for 54 over corresponding WLS counterpart. Confidence intervals con-

structed with asymptotic standard errors, assuming correct specifica-
tion of the CMF.

(-MVR e-MVR

o) 0 0.5 1 1.5 2 0 0.5 1 1.5 2

n = 20 99.0 98.7 985 979 964  97.7 100.3 103.1 104.9 104.5
n = 40 100.5 100.4 101.4 1014 98.7 96.8 100.7 105.5 109.4 108.3
n = 80 101.8 101.1 102.9 101.8 96.5 96.7 100.8 105.4 108.2 103.2
n = 160 102.2 101.3 103.8 99.9 93.1 97.2 100.8 102.7 102.0 922
n = 320 102.2 101.5 1045 97.5 90.2 97.7 100.3 98.8 941 80.2
n = 640 101.9 101.9 1049 948 86.8 984 99.1 941 859 695
n=1280 101.3 102.3 1049 925 835 989 97.7 896 788 60.6

TABLE 9. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding WLS counterpart. Confidence intervals con-

structed with standard errors with HC1 correction, assuming correct
specification of the CMF.

(-MVR e-MVR
a 0 05 1 15 2 0 0.5 1 1.5 2

n = 20 95.8 971 969 94.5 909 988 101.3 103.2 102.7 98.5
n = 40 96.3 99.6 100.1 97.0 91.2 99.0 101.0 102.4 101.1 94.3
n = 80 97.2 101.5 1027 979 90.1  98.6 99.2 995 969 87.3
n = 160 97.8 102.7 104.5 97.0 8.1 985 975 955 90.6 78.2
n = 320 98.4 103.3 105.2 95.5 86.5 98.6 96.7 922 84.7 69.4
n = 640 98.9 103.3 1054 93.3 834 989 958 888 787 61.5
n=1280 99.1 103.2 1053 91.2 80.0 991 949 856 73.6 55.2

TABLE 10. Ratio (x100) of MVR average confidence interval lengths
for B4 over corresponding WLS counterpart. Confidence intervals con-
structed with standard errors with HC3 correction, assuming correct
specification of the CMF.
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3. REVERSAL OF FORTUNE: ADDITIONAL RESULTS

We complement the analysis for the reversal of fortune empirical application in the
main text by reporting standard errors with finite-sample corrections (HC1 and HC3
as described in Section 2.1) and results for WLS in Table 11. The exponential scale
specification, e-WLS, cannot be used in this empirical application due to several
regressors taking value zero for some observations, so that the log transformation
cannot be applied to those regressors. Thus we only report the results for WLS with
linear scale, (-WLS.

The results in Table 11 further strengthen the main conclusions in the main text
with all standard errors increasing slightly when finite-sample corrections are applied,
except for MVR when the Americas are dropped (Panel (3)) where the urbanization
in 1500 coefficient remains insignificant. For WLS we find that the magnitude of WLS
coefficients is smaller than MVR point estimates (except for Panel (3)). In addition to
specifications (3), (4), (6) and (9), specification (5) is also found to be not statistically
significant with WLS, due to a large drop in the coefficient estimated value relative
to both OLS and MVR.

We also report MVR standard errors assuming correct specification of the CMF with
and without finite-sample corrections in Table 12. The results confirm that in this
example MVR standard errors are robust to finite-sample corrections, and standard

errors assuming correct specification of the CMF tend to be slightly smaller.

Overall, we find that our main qualitative conclusions are robust to implementing
finite-sample corrections and assuming that the CMF is correctly specified in the
calculation of standard errors. Although the numerical simulations in Section 5 of the
main text and Section 2 suggest some caution in using -WLS inference in such small
samples, the results in Tables 11-12 provide additional evidence that the relationship
between urbanization in 1500 and GDP per capita in 1995 (PPP basis) is weaker and
less robust that found using OLS.
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4. DEMAND FOR GASOLINE IN THE UNITED STATES

4.1. Empirical Application. To illustrate our methods further, we consider a sec-
ond empirical application to the parametric approximation of demand for gasoline
in the United States. We use the same data set as in Blundell, Horowitz and Parey
(2012), which comes from the 2001 National Household Travel Survey, conducted
between March 2001 and May 2002'. Blundell, Horowitz and Parey (2012) perform
both parametric and nonparametric estimation of the average demand function, and
provide evidence of nonlinearities. The data set for their main specifications is large,
with a sample of 5254 individual households, and contains household level variables,
including gasoline price and consumption, and demographic characteristics. We use
these features of the data set to compare the approximation properties of MVR and
OLS , to implement our inference methods under misspecification and to calibrate

our numerical simulations.

We consider an MVR approximation for the demand for gasoline function
Y = B+ X161+ Xof + X303 + s(70 + Xam1 + Xoye + X373)e,

where e satisfies the orthogonality conditions F[Xe] = 0 and E[X s;(X'y)(e?—1)] = 0,
with X = (1, Xy, Xo, X%)" and v = (70, 71,72, 75)’. We take the outcome Y to be log
gasoline annual consumption in gallons, X is log average price in dollars per gallon in
county of residence, and X, is log income in dollars with each household assigned to
1 of 18 income groups. Following Blundell, Horowitz and Parey (2012), the baseline
specification only includes log price and log income, and further covariates are added
in other specifications. The vector of additional controls X3 includes the log of age of
household respondent, household size, number of drivers and workers in the household
(specification (2)), as well as a dummy for public transport availability (specification
(3)), 4 urbanity dummies (specification (4)), 8 population density dummies and 9

regional dummies (specification (5)).

Table 13 reports estimates and standard errors for the average price and income elas-
ticities obtained by OLS, /-MVR and e-MVR across the 5 linear specifications. In
the baseline specification, MVR price elasticities are —0.89 and exactly coincide with
the average price elasticity found by Yatchew and No (2001) and West (2004), and
differ slightly from the OLS point estimate —0.93 in this sample. For specifications
(1)-(4), MVR price elasticities are slightly smaller than OLS estimates, and the price

1See Blundell, Horowitz and Parey (2012) and ONRL (2004) for a detailed description of the data.
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Dependent variable is log of annual household gasoline
demand in gallons

Log price coefficient Bl Log income coefficient 5’2
OLS (¢-MVR e-MVR OLS ¢-MVR e-MVR

(1) Baseline specification
-0.925 -0.892 -0.888 0.289 0.283 0.283
(0.150) (0.144) (0.144)  (0.0190) (0.0173) (0.0172)

(2) With demographics
-0.879 -0.857 -0.854 0.246 0.244 0.244
(0.143) (0.137) (0.137)  (0.0183) (0.0169) (0.0167)

(3) With demographics and public transports
-0.830 -0.820 -0.816 0.269 0.268 0.268
(0.143) (0.137) (0.137)  (0.0187) (0.0172) (0.0171)

(4) With demographics, public transports and urbanity
-0.495 -0.483 -0.478 0.298 0.301 0.301
(0.141) (0.135) (0.134)  (0.0190) (0.0174) (0.0173)

(5) With demographics, public transports, urbanity
and regions
-0.358 -0.415 -0.408 0.297 0.302 0.302
(0.270) (0.256) (0.256)  (0.0199) (0.0181) (0.0181)

TABLE 13. Demand for gasoline. Asymptotic heteroskedasticity-
robust OLS standard errors and MVR standard errors are in paren-
thesis.

elasticity drops sharply in specification (4) which adds indicators for urbanity and
population density. Adding regional dummies (Panel (5)) results in a further reduc-
tion in price elasticities and a loss of significance, although to a much smaller extent
for MVR estimates?. Given the large sample size, it is interesting to note that for all
specifications MVR and OLS standard errors still differ, with MVR standard errors

>The p-values for price elasticities increase to 0.185 for OLS and to 0.105 and 0.111 for MVR
estimates.
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smaller than heteroskedasticity-corrected OLS standard errors, which is a reflection

of the heteroskedasticity detected for all specifications®.

4.2. Numerical Simulations. We assess and illustrate the finite-sample properties
of our estimators in a Monte Carlo experiment calibrated to our second empirical
example. Our models feature a linear CMF, and we implement OLS and MVR with

linear and exponential scale functions.

The explanatory variables included in the simulations are chosen according to speci-
fication (4) in the demand for gasoline example, the preferred linear specification in
Blundell, Horowitz and Parey (2012) (the log price coefficient is no longer significant
in specification (5)). We report estimation and inference simulation results for log
price and log income, but include all covariates in the simulations. All designs are

calibrated to specification (4) by Gaussian maximum likelihood.

Design LOC. Our first design is the homoskedastic model
YZﬁo—f-Xlﬁl—i-XQﬁz—FXéﬁg—i-O'&, é‘NN(O,l)

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions
Y:ﬁo—l-Xlﬁl+X262+X§63+(X/7)a6, ENN(O,1>, o€ {05,1,15,2}

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions
Y:60+X161 +X262+X563+GXP(X/’Y>Q€, €NN(O,1), o€ {05,1,15,2}

For all experiments, we set the sample size to n = 500, 1000, and 5254, the sample
size in the empirical application, and 5000 simulations are performed. For n = 5254,
we fix X to the values in the data set, whereas for the smaller sample sizes we draw
X with replacement from the values in the data set and keep them fixed across
replications. The location design LOC serves as a benchmark for comparing the
relative performance of MVR and OLS when OLS is efficient. For a = 1, /-MVR
is correctly specified for the design LIN, and e-MVR is correctly specified for design
EXP. Designs with o = 0.5 feature low heteroskedasticity, whereas a = 2 corresponds

to high heteroskedasticity.

3For each specification we implemented the tests of Breusch and Pagan (1979), White (1980) and
Koenker (1981)) for heteroskedasticity for OLS and the MVR-based test introduced in Section 4 of
the main text. All tests reject the null of homoskedasticity for all specifications.

21



Design LOC LIN EXP

o 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coefficient 3

n = 500 102.1 100.5 96.0 89.0 80.6  100.6 96.1 &89.0 80.3
¢-MVR n=1000 100.5 98.7 936 854 T75.0 98.8 93.6 853 75.2
n =95254  100.1 98.5 934 852 745 98.5 934 849 738

n = 500 102.1  100.4 959 89.1 80.5 100.4 95.8 88.7 79.5

e-MVR n =1000 100.5 98.7 93.6 8.9 764 98.7 93.5 8.3 74.8
n =5254  100.1 98.5 93.6 86.0 76.5 98.5 934 85.1 74.3

Log income coefficient [,

n = 500 101.6 99.6 93.7 8.1 75.1 99.4 928 829 71.2
¢-MVR n=1000 101.4 98.2 894 770 63.5 97.4 86.0 70.3 53.9
n =5254  100.3 96.8 88.1 76.2 63.2 96.0 852 70.6 55.3

n = 500 101.7 99.8 93.8 84.8 739 99.6 92.6 81.9 6838
e-MVR n =1000 101.4 98.3 89.1 758 61.1 97.3 849 674 48.9
n=5254  100.3 96.7 876 749 61.0 95.8 84.0 67.7 504

TABLE 14. Ratio (x100) of MVR RMSE for 8, and 5y over corre-
sponding OLS counterpart.

Table 14 reports a first set of results regarding the accuracy of our estimators. We
report the ratios of RMSEs for 3; and 35 of /-MVR and e-MVR over RMSEs of OLS, in
percentage terms. The results show that MVR estimators achieve large gains relative
to OLS in the presence of heteroskedasticity, with ratios that reach 73.8 for Bl and 50.4
for (3, under heteroskedasticity, with e-MVR outperforming (-MVR slightly in this
example. Gains in estimation precision increase with the degree of heteroskedasticity
and sample size. In the homoskedastic case where OLS is efficient, there is close to
no loss in precision from using MVR, with ratios ranging from 100.1 to 102.1. OLS

and MVR become equivalent as sample size increases for the homoskedastic case.

Table 15 reports ratios of /-MVR and e-MVR average confidence interval lengths
across simulations for 8; and fy over OLS average confidence interval lengths, in

percentage terms. In these simulations MVR yields substantially tighter confidence
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Design LOC LIN EXP
a 0 05 1 15 2 05 1 1.5 2
Log price coefficient 31
n = 500 98.8 98.1 96.1 92.8 88.6 98.1 96.1 92.8 88.3
¢-MVR  n = 1000 99.2 98.3 95.8 91.6 86.0 98.3 958 91.6 85.7
n = 5254 99.8 98.9 96.3 91.9 8.0 989 96.3 91.8 85.6
n = 500 98.6 97.9 958 92,5 8.1 979 958 92.3 875
e-MVR n = 1000 99.1 98.3 95.8 92.0 869 983 958 91.6 859
n = 5254 99.8 98.9 96.4 924 872 98.9 96.3 91.9 859
Log income coefficient BQ
n = 500 98.9 98.2 955 91.3 86.3 98.0 95.0 90.1 84.0
¢-MVR n = 1000 99.2 98.0 939 87.7 80.1 97.5 923 84.1 744
n = 5254 99.8 98.3 93.9 87.5 79.9 979 924 84.3 T4.7
n = 500 98.7 97.8 949 904 846 97.7 943 88.8 81.6
e-MVR n = 1000 99.1 97.8 93.5 86.8 785 97.3 91.5 82.2 70.8
n = 5254 99.8 98.2 93.6 86.8 784  97.8 91.7 825 T14

TABLE 15. Ratio (x100) of MVR average confidence interval lengths
for 81 and By over corresponding OLS counterpart. Confidence intervals

constructed with asymptotic standard errors.

intervals compared to OLS in the presence of heteroskedasticity, with confidence in-
terval lengths ratios that reach 78.4 for Bl and 70.8 for BQ, while not incurring any loss
in precision for the homoskedastic data generating process. The relative performance
of e-MVR improves with the degree of heteroskedasticity.

For completeness we also report results for confidence intervals constructed assum-
ing correct specification of the CMF. Table 16 reports ratios of --MVR and e-MVR
average confidence interval lengths across simulations for $; and (3 over OLS aver-
age confidence interval lengths, in percentage terms. MVR confidence intervals are
slightly more favorable to MVR compared to the results obtained with standard er-

rors robust to mean misspecification reported in Table 15, while not incurring any

loss in precision for the homoskedastic data generating process.
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Design LOC LIN EXP
o 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coefficient 31

n = 500 96.8 96.1 939 90.5 86.0 96.1 94.0 90.5 85.8
¢-MVR n = 1000 98.4 97.6 95.0 90.7 84.7 97.6 950 90.6 84.5
n = 5254 99.7 98.8 96.2 91.8 858 988 96.2 91.7 854

n = 500 97.4 96.3 942 91.0 86.7 96.3 942 90.8 &6.1
e-MVR n = 1000 98.6 97.6 952 914 864 976 952 91.1 854
n = 5254 99.7 98.8 96.3 924 871 98.8 96.2 91.9 85.8

Log income coefficient [,

n = 500 96.5 95.8 93.1 88.9 83.7 95.7 92.7 87.8 8138
¢-MVR n = 1000 98.1 97.1 932 87.0 795  96.7 91.6 83.6 T4.0
n = 5254 99.7 98.2 93.8 874 798 978 923 84.2 T4.7

n = 500 97.1 95.8 929 884 827 956 923 86.9 79.9
e-MVR n = 1000 98.6 97.0 92.7 86.0 77.8 96.5 90.7 81.6 70.4
n = 5254 99.7 98.1 93,5 86.7 784  97.7 91.7 825 T14

TABLE 16. Ratio (x100) of MVR average confidence interval lengths
for 81 and By over corresponding OLS counterpart. Confidence intervals

constructed with asymptotic standard errors assuming correct specifi-
cation of the CMF.

4.3. Additional Simulations: Nonlinear CMF. We present the results of a sec-
ond set of experiments in which we compare the approximation properties of MVR to
those of OLS under misspecification of the CMF, in RMSE. The designs of our sim-
ulations are modified to incorporate a nonlinear relationship between X; (log price)
and Y (log gasoline annual consumption). We specify the nonlinear relationship in

X1 by means of trigonometric basis functions
f(xq,01) = 01121 + 12 8in(27x1) + 013 cos(2mwy) + d14 sin(4dmxy) + d15 cos(dmxy).

All designs are calibrated to specification (4) by Gaussian maximum likelihood.

Design LOC. Our first design is the homoskedastic model

Y = 6o+ f(X1, 1) + Xofs + X355 + oe.
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Design LOC LIN EXP

o 0 0.5 1 1.5 2 0.5 1 1.5 2

n = 500 101.2  100.9 100.0 98.5 96.5  100.9 100.0 98.6 96.5
¢-MVR n=1000 100.7 100.0 979 94.6 90.1 100.0 97.9 94.1 88.9
n=5254  100.1 99.6 97.8 95.0 91.6 99.5 975 941 89.6

n = 500 100.8  100.6 99.9 98.6 96.8 100.6 99.8 983 96.2
e-MVR n =1000 100.6 99.9 978 94.5 90.2 99.9 97.7 93.8 88.3
n =95254  100.1 99.6 97.8 95.0 91.6 99.5 974 939 89.1

TABLE 17. Ratio (x100) of average MVR RMSE for u(x) over corre-
sponding OLS counterpart.

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions
Y = Bo—i_f(Xla 61)+X262+Xé53+8(70+f()(1a 71)+X272+Xé73>a€7 (OS {057 17 157 2}

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions
Y = Bo+f(X1, B1)+XoBa+ X5 03+5(v0+f (X1, 1) +Xov2+X373)%, a € {0.5,1,1.5,2}.

where ¢ ~ N(0,1). For all designs we implement MVR and OLS for the same sample
sizes and X values as in Section 4.2, with the number of simulations set to 5000.

Table 17 reports results regarding the accuracy of OLS and MVR linear approxima-
tions of the p(z, B) = Bo + f(x1, B1) + 202 + 2403, evaluated at the n sample values
x1; of X1, and at fixed values of the remaining variables.* For each data generating
process we report the ratios of average estimation errors across simulations of -MVR
and e-MVR relative to OLS in percentage terms. Estimation errors are measured for

each simulation in RMSE, and then averaged across simulations.

In these simulations MVR yields more accurate approximation of nonlinear CMF's

than OLS, measured in RMSE. Thus, in presence of heteroskedasticity the minimum

4The non binary variables X5, X31,... X34, are evaluated at their modal values. These variables
are the log of household income, age of household respondent, household size, number of drivers
and workers in the household, respectively. We fix the value of the remaining indicators for public
transport availability, urbanity and population density included in X3 to one.
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mean squared error OLS property does not necessarily translate into more accurate

CMF approximation in finite samples relative to MVR.
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